
PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Nonlinear theory of metal-solvent interface using the density functional approach
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Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
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A nonlinear theory for the calculation of spatial and orientational structure of a dipolar solvent near a metal
surface is developed by using the density functional approach. The theory is based on a weighted density
approximation for the isotropic part of the density and the anisotropic part is calculated by using a perturbative
approach. The theory, however, retains the full nonlinear dependence of the inhomogeneous solvent structure
on the field produced by the metal surface and also on solvent-solvent interactions. Explicit numerical results
are obtained for the number density and polarization of a dipolar solvent near a metal surface. The number
density of the solvent near the surface is found to increase with increase of the electrostatic field of the metal,
which is a nonlinear effect. The polarization is also found to increase nonlinearly with the metal field and
exhibits the presence of pronounced orientational order near the metal surface.@S1063-651X~99!02403-4#

PACS number~s!: 68.45.Da, 61.20.Gy
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I. INTRODUCTION

A detailed description of the structure and dynamics o
dipolar liquid near a metal surface is of primary importan
in electrochemistry and surface science. The inhomogene
field of a metal surface can influence the structure and
namics at the molecular level and as a result the behavio
an interfacial medium can be very different from that of
bulk liquid. The approach of a molecule to a metal surface
an important step in many physical and chemical proces
such as adsorption and heterogeneous electron transfer
tions @1# and the rates of such processes are expected t
influenced by the molecular properties of the metal-solv
interface. In the present paper, we focus on the struct
properties of a metal-solvent interface.

The modifications of the structure of a dipolar solve
near a metal surface have been the subject of much atte
in the recent past, both experimentally and theoretica
Toney and co-workers@2,3# measured the spatial and orie
tational structure of water molecules near silver surfaces
means ofin situ x-ray scattering. They found that water de
sity near the surface is significantly higher than the b
density, which implies that the hydrogen bonding network
disrupted in the water layer next to the charged surfac
Also, pronounced orientational structure was found in th
experiments. Similar orientational order was also found
water molecules near gold surfaces by Ataka, Yotsuyan
and Osawa@4# by means of surface-enhanced infrared a
sorption spectroscopy. In the past decade, molecular dyn
ics ~MD! and Monte Carlo~MC! simulations have been em
ployed to investigate the structural properties of dipo
solvents near metal surfaces@5–12#. In these studies, the
liquid is usually treated by employing one of the standa
water models and the surface-water interaction is modele
different ways. Many models of metal-water interaction a
based on the calculations of a water molecule with a m
cluster. Metal-water interactions have also been modeled
suming a planar surface with a uniform distribution
Lennard-Jones particles for the metal atoms or site-site
tentials acting between the metal and water molecules
one such recent study, Xia and Berkowitz@11# carried out
PRE 591063-651X/99/59~3!/3140~7!/$15.00
a

us
y-
of

is
es
ac-
be
t
al

t
ion
.

y

k
s
s.
ir
r
i,
-
m-

r

d
in
e
al
s-

o-
In

MD simulations of the SPC/E model of water@13# near
charged platinum surfaces and found no dramatic increas
water density near the surfaces. Also, no significant disr
tion of hydrogen bonding near the charged surfaces
found. Clearly, our understanding of the structure of dipo
solvents near metal surfaces is far from complete and m
basic questions remain.

There has also been a good deal of interest in develop
theories of the metal-solvent interface. In their early wo
Badiali, Rosinberg, and Goodisman@14# considered con-
tinuum dielectric models and Schmickler@15# treated mono-
layers of discrete dipoles on a metal surface. In further st
ies, Badiali et al. @16# and others@17–19# considered a
metal-solution interface by considering the molecularity
the solution. Although these studies demonstrated the im
tance of treating the liquid at a molecular level, they did n
properly couple the solution structure at interface to the e
tronic structure of the metal. In a further significant advan
Berardet al. @20# investigated the structure of a dipolar so
vent near a metal surface by including the coupling betw
the interfacial solvent structure and the electron density
the metal. These authors treated the metal by employing
so-called jellium model, which was then solved by using t
general self-consistent approach of Gies and Gerhardts@21#
for metal slabs of finite thickness. The solvent structure w
obtained by employing the reference hypernetted ch
~RHNC! approximation@22# taking account of metal-solven
interaction. The solvent structure at the interface was fou
to be significantly altered by electrostatic interactions w
the metal surface.

An alternative approach to the study of a solid-liquid i
terface is the density functional theory~DFT!, which has
been recognized as a versatile tool for the description of
structure and properties of inhomogeneous systems@23#. A
recent development in the density functional theory is
so-called weighted density approximation~WDA! @23–30#.
This is a nonperturbative approach in which one assum
that a system with an inhomogeneous density distribut
can be locally mapped to a corresponding uniform syst
with a position-dependent effective density. Two rece
weighted density schemes that have been quite successfu
3140 ©1999 The American Physical Society
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PRE 59 3141NONLINEAR THEORY OF METAL-SOLVENT INTERFACE . . .
due to Tarazona@27# and Ashcroft and co-workers@28,29#.
The first approach is based on an evaluation of excess
energy density from the corresponding expression of the
form system using the effective density and the approac
Ashcroft and co-workers is based on a calculation of
first-order correlation function of an inhomogeneous syst
using the corresponding expression for a uniform syst
The density functional approaches using WDA have b
quite successful in predicting the structure of neutral in
mogeneous hard sphere fluids and ionic solutions near s
surfaces and, very recently, have been extended to stud
polar fluids near charged surfaces@31,32#. Similar studies
have not yet been carried out to investigate the structure
properties of a metal-solvent interface.

In this work, we present a nonlinear theory for the solve
structure and polarization near a metal surface by using c
sical DFT for the solvent and quantum DFT for the met
The theory is based on a weighted density approximation
the isotropic correlation and a perturbative approximation
the dipolar electrostatic contribution to the first-order cor
lation function of the inhomogeneous solvent. The theo
however, retains the full nonlinear dependence of the in
facial solvent structure on the metal potential and also
solvent-solvent interactions. The metal potential is calcula
by modeling the metal as a jellium that is then solved
using the general quantum density functional approach
Hohenberg-Kohn-Sham@33,34#. Self-consistent equation
are derived for the solvent density, polarization, and me
electron density. The final equations are solved iterativ
and results are obtained for the density and polarization
the interfacial solvent.

The organization of the rest of the paper is as follows.
Sec. II, we present the theory and the numerical results
discussed in Sec. III. We summarize our conclusions in S
IV.

II. THEORY

We consider a solvent consisting of nonpolarizable di
lar molecules that are confined between two metal surfa
The separation between the surfaces is large enough so
the structure at one surface is not affected by that at the o
surface. The solvent molecules are characterized by the
called dipolar hard-sphere potential where dipolar molecu
interact through a short-range hard-sphere interaction a
long-range dipole-dipole interaction potential. The solve
molecules also interact with the two metal surfaces, wh
are considered to be infinite walls located at positionsz8 and
z9 along thez axis, and thex andy axes are parallel to the
surfaces. For this geometry, the wall-solvent interaction
tential depends on thez coordinate of the solvent molecul
and on its orientation~V! and can be written as

u~z,V!5u8~z,V!1u9~z,V!, ~1!

whereu8 and u9 represent the interaction of a solvent pa
ticle with walls located atz5z8 and z5z9, respectively.
Both u8 and u9 include a short-range isotropic part and
electrostatic anisotropic part. The short-range isotropic p
is described by a hard-wall–hard-sphere interaction and
anisotropic part represents the interaction of a dipole with
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metal electrostatic field generated by the nonuniform el
tron density of the metal surface. Thusu8(z,V) can be writ-
ten as

u8~z,V!5uhw~ uz2z8u!2E8~z!•m, ~2!

whereuhw(uz2z8u) is infinity for uz2z8u,s/2 and zero oth-
erwise andE8(z) is the electric field produced atz by the
metal surface located atz8. s and m are, respectively, the
diameter and dipole vector of a solvent molecule with orie
tation V.

We denote r~r ,V! as the position- and orientation
dependent number density of the solvent. In DFT, the gr
potential of this system at fixed temperature, volume, ex
nal field, and chemical potential can be exactly expresse
a functional of the inhomogeneous density distribution

V̄@r~r ,V!#5F@r~r ,V!#1E dr dV

3r~r ,V!@u~r ,V!2m̄#, ~3!

where u(r ,V) is the external potential,m̄ is the chemical
potential, andT is the temperature. The intrinsic Helmhol
free energyF@r(r ,V)# is a universal functional of density
and consists of two components,

F@r~r ,V!#5F id@r~r ,V!#1Fex@r~r ,V!#, ~4!

where the ideal gas free-energy functionalF id@r(r ,V)# is
given by

F id@r~r ,V!#5b21E dr dV r~r ,V!

3$ ln 4pl3r~r ,V!21%, ~5!

whereb51/kBT, kB is Boltzmann constant andl is the ther-
mal de Broglie wavelength. The excess free ene
Fex@r(r ,V)# includes the contribution from intermolecula
interactions and it defines the direct correlation functions
different order through functional derivatives, the most im
portant ones being the first- and second-order correla
functions defined by@22#

c~1!
„r ,V;@r~r ,V!#…52b

dFex@r#

dr~r ,V!
, ~6!

c~2!~r ,r 8,V,V8!52b
d2Fex@r#

dr~r ,V!dr~r 8,V8!
. ~7!

Minimizing the grand potential of Eq.~3! with respect to
density and evaluating the chemical potential for the unifo
bulk density, one obtains an expression for the equilibri
density of the dipolar fluid between the two surfaces. Sin
the density variation is only along the perpendicular~z! di-
rection, one can write the following expression for the inh
mogeneous density:

r~z,V!5
r0

4p
exp@2bu~z,V!

1c~1!
„z,V;@r~z,V!#…2c~1!~r0/4p!#, ~8!
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3142 PRE 59SANJIB SENAPATI AND AMALENDU CHANDRA
for s/2,z,(L2s/2) andr(z,V)50 otherwise, whereL is
the separation between the two metal surfaces along tz
direction. The application of the density functional meth
can now proceed by the search for a self-consistent solu
of Eq. ~8!. The above equation is a formally exact relati
that, in principle, may be solved forr(z,V) if the functional
c(1) is known. In practice, however,c(1) is generally un-
known for inhomogeneous systems and so must be app
mated. The simplest approximation ofc(1)

„r ,V;@r(r ,V)#…
of an inhomogeneous system involves a perturbative exp
sion ~up to first order! in terms of the density inhomogeneit
that makes use of the second-order direct correlation func
of the corresponding homogeneous system and is given

c~1!
„r ,V;@r~r ,V!#…2c~1!~r0/4p!

5E dr 8dV8c̃~2!~r2r 8,V,V8!S r~r 8,V8!2
r0

4p D ,

~9!

where c̃(2)(r2r 8,V,V8) is the second-order direct correla
tion function of the homogeneous liquid. Thez-dependent
first-order correlation functionc(1)

„z,V;@r(z,V)#… can be
obtained by integrating Eq.~9! overx andy coordinates. For
convenience, we write the second-order direct correla
function in terms of angular functions as follows:

c̃~2!~r2r 8,V,V8!5c0000~ ur2r 8u!

1c110~ ur2r 8u!f110~V,V8!

1c112~ ur2r 8u!f112~V,V8, r̂ !,

~10!

where the angular functionsf110(V,V8)5(m̂•m̂8) and
f112(V,V8, r̂ )53(m̂• r̂ )(m̂8• r̂ )2(m̂•m̂8), m̂ and m̂8 are the
unit vectors along dipole moments of particles located ar
and r 8, and r̂5(r2r 8)/ur2r 8u. In Eq. ~10!, c000(ur2r 8u)
represents the isotropic or hard-sphere part and the se
and third terms represent the anisotropic or dipolar parts
the direct correlation function the analytical solutions
which are available within integral equation theories such
mean spherical approximation~MSA! @35#.

An alternative to Eq.~9! is to adopt the WDA in which
c(1)

„z,V;@r(z,V)#… for the inhomogeneous density is o
tained by evaluating the corresponding expressionc̃(1) for
the homogeneous fluid at an effective densityr̄(z,V). Thus,
we write

c~1!
„z,V;@r~z,V!#…2c~1!~r0/4p!

5 c̃~1!
„r̄~z,V!…2 c̃~1!~r0/4p!. ~11!

Although the perturbative approximation, Eq.~9!, is simpler
to deal with, WDA has been known to provide a better tre
ment for the hard-sphere correlation contributions. The
fore, we decompose the total first-order direct correlat
function into two parts: c(1)5chs

(1)1cex
(1) , wherechs

(1) is the
isotropic hard-sphere contribution to the first-order dir
correlation function andcex

(1) represents the remaining anis
tropic ~or excess! contribution which arises from the explic
dipole-dipole electrostatic interactions and also from the c
n

xi-

n-

n
y

n

nd
of
f
s

t-
-

n

t

-

pling of electrostatic and hard-sphere interactions. We ad
a partially nonperturbative approach in which we evalu
the isotropic hard-sphere contributionchs

(1) using WDA and
the remaining anisotropic partcex

(1) through a perturbative
approach by using an equation similar to Eq.~9! but involv-
ing only the anisotropic terms of the second-order direct c
relation function. The expression for the inhomogeneo
density can now be written in the following form:

r~z,V!5
rhs~z!

4p
expF2bu~z,V!

1E dx dy dr 8 dV8@c110~ ur2r 8u;r0!

3f110~V,V8!1c112~ ur2r 8u,r0!

3f112~V,V8, r̂ !#„r~z8,V!2r0/4p…G ~12!

and

rhs~z!5r0 exp@chs
~1!
„r̄hs~z!…2chs

~1!~r0!#, ~13!

wherechs
(1)
„r̄hs(z)… refers to the hard-sphere contribution

the first-order correlation function defined through WDA
an effective densityr̄hs(z) obtained as the weighted averag
r̄hs(z)5*dz8rhs(z8)w(uz2z8u) wherew(z2z8) is a planar
averaged weight function for the hard-sphere density. Th
are several ways to calculate the weight function, the m
successful among them are those of Tarazona@27# and of
Ashcroft and co-workers@28,29#. In the WDA proposed by
Tarazona@27#, chs

(1)
„z; r̄(z)… is calculated by calculating the

hard-sphere contribution to the excess free-energy densitf hs

@defined throughFhs
ex5*dr r(r ) f hs(r )# of the uniform system

using the effective densityr̄. In this scheme, the first-orde
correlation functions are given by

chs
~1!~z; r̄ !52b f hs@ r̄~z!#2bE dz8r~z8! f hs8 @ r̄~z!#

3
w„z2z8; r̄~z8!…

12 r̄1~z8!22r̄2~z8!r̄~z8!
, ~14!

chs
~1!@r0#52b f hs@r0#2br0f hs8 @r0#, ~15!

where f hs8 is the derivative off hs. The expression for the
weight function in this approach is given by the second-or
expansion

w„uz2z8u; r̄~z!…5w~0!~ uz2z8u!1w~1!~ uz2z8u!r̄~z!

1w~2!~ uz2z8u!r̄~z!2, ~16!

with the density-independent component weight functio
normalized as*dz8w( i )(z2z8)5d i ,0 . The weighted density
r̄(z) in this scheme can be expressed as

r̄~z!5
2r̄ ~0!~z!

@12 r̄ ~1!~z!#1@„12 r̄ ~1!~z!…224r̄ ~0!~z!r̄~2!~z!#1/2,

~17!
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PRE 59 3143NONLINEAR THEORY OF METAL-SOLVENT INTERFACE . . .
where r̄ ( i )(z)5*dz8r(z8)w( i )(uz2z8u), i 50,1,2. Explicit
expressions for the density-independent component we
functions are available in the literature@27,30#. In the present
work, we have implemented the above scheme for the ca
lation of the hard-sphere part of the solvent density.

We now expand the position and orientation depend
density r(z,V) in the basis set of spherical harmoni
Ylm(V) as follows@36#:

r~z,V!5(
lm

alm~z!Ylm~V!. ~18!

Clearly, the angle averaged number densityr(z)
5*dV r(z,V)5A4pa00(z) and the solvent polarization
P(z) is related toa10(z) by the following relationP(z)
5A4p/3ma10(z). Substitution of Eq.~18! and explicit forms
of angular functionsf110 andf112 into Eq.~12! and carrying
out the angular integrations give the following simplified e
pressions for the density components:

a00~z!5
rhs~z!

A4p

sinh$bmE~z!1I 1~z!1I 2~z!%

bmE~z!1I 1~z!1I 2~z!
, ~19a!

a10~z!5~ 3
4 !1/2rhs~z!S cosh$bmE~z!1I 1~z!1I 2~z!}

bmE~z!1I 1~z!1I 2~z!

3
sinh$bmE~z!1I 1~z!1I 2~z!%

@bmE~z!1I 1~z!1I 2~z!#2 D , ~19b!

whereE(z) is the electrostatic field of the metal surfaces a
I 1(z) and I 2(z) are given by

I 1~z!5E dz8a10~z8!c110~z2z8! ~20a!

and

I 2~z!5E dx dy dr 8a10~z8!c112~ ur2r 8u!S 3uz2z8u2

ur2r 8u2
21D ,

~20b!

wherec110(z2z8) is obtained fromc110(ur2r 8u) by integrat-
ing over x and y coordinates. In the present work, MS
solutions are used forc110(ur2r 8u) and c112(ur2r 8u) @35#.
One can also calculate the quantity^cosu&z, the average
value of cosu for a solvent molecule at a given value of th
positionz from the surface. ^cosu&z can be written in terms
of position and orientation dependent density as

^cosu&z5
*dV~cosu!r~z,V!

*dVr~z,V!
5L@bmE1I 1~z!1I 2~z!#,

~21!

whereL refers to the Langevin function, defined asL(x)
5coth(x)2x21. The expression for̂ cosu&z in the above
equation includes the effects of dielectric saturation@37# in
the presence of a strong metal field, since^cosu&z in the
Langevin form approaches the saturated value of unity
large field strengths.

We note that the full nonlinearity of Eq.~12! is retained in
Eq. ~19!. Equations~19!–~21! are the key results of this wor
ht

u-

nt

d

at

which constitute a set of nonlinear equations for the calcu
tion of number density, polarization, and average orientat
of a molecule near metal surfaces. The above equations
be solved iteratively once the metal electrostatic fieldE(z) is
known. We note thatE(z)52(]/]z)V(z), whereV(z) is
the metal electrostatic potential that satisfies the Pois
equation

d2

dz2
V~z!524prc~z!, ~22!

whererc(z) is the charge density of the metal. An explic
modeling of the electronic structure of the metal is now n
essary in order to calculate the charge density and the m
field. Following Berardet al. @20#, we model the metal walls
by semi-infinite jellium slabs of width 2zw . The jellium
model consists of a uniform background of positive cha
densityr1 which represents the metal nuclei and core el
trons and the associated valence electron densityre(z). The
valence electron density is calculated by using density fu
tional theory@33,34#. In this approach, the electron density
calculated by solving the effective one-electron Schro¨dinger
equation

2
\2

2me

d2

dz2
cn~z8!1Veff~z8!cn~z8!5encn~z8!, ~23!

wherecn anden are the one-electron normalized eigenfun
tion and energy eigenvalue for thenth state andme is the
mass of an electron.z8 denotes thez coordinate with origin
at the center of the metal slab.Veff(z8) is the effective poten-
tial, which is given by

Veff~z8!5Vjel~z8!1Vxc~z8!1Vdip~z8!, ~24!

where Vjel(z8) represents instantaneous interaction of
electron with the field of the jellium,Vxc(z8) is the exchange
and correlation potential, andVdip(z8) is the average interac
tion energy of the electron with the dipolar solvent. The v
lence electron densityre(z8) is given by

re~z8!5
me

p\2 (
en,eF

~eF2en!ucn~z8!u2, ~25!

where eF is the Fermi energy, which is obtained from th
following equation:

eF5
2p\2r1zw

menF
1 (

en,eF

en

nF
, ~26!

wherenF is the number of eigenstates with energyen,eF .
Equation~26! is obtained by using the charge neutrality co
dition.

In the present work, we have used the local density
proximation with Wigner’s expression for the exchange a
correlation energy@38#,

Vxc~z8!52e2S 0.611

r s~z8!
10.147

4r s~z8!123.4a0

@r s~z8!17.8a0#2D , ~27!
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wherer s(z8)5@4pre(z8)/3#21/3, e is the magnitude of elec
tronic charge, anda0 is the Bohr radius. The interaction o
an electron with the solvent dipoles is given by@20#

Vdip~z8!5
2pr0me

3 S E
0

z8
gws

011~z!dz2E
z8

`

gws
011~z!dzD ,

~28!

where gws
011(z) is the ~011! component of the following

Legendre polynomial expansion of the metal-solvent co
lation function

gws~z,u!5(
n

~21!ngws
011~z!Pn~cosu!, ~29!

wherePn(cosu) is the Legendre polynomial of ordern. We
note that the solvent polarizationP(z) is related togws

011(z)
by the following relation:

P~z!52
2mr0

3
gws

011~z!. ~30!

Clearly, the metal potential depends on the solvent polar
tion, which, in turn, depends on the potential of the me
surface. Thus, the above equations for the metal pote
and the solvent structure are solved self-consistently thro
iteration. Initially, the metal potential is calculated by repla
ing the dipolar fluid by vacuum. The dipolar liquid was the
introduced and the Eq.~19! was solved for the solvent den
sity and polarization. After this initial calculation,Vdip(z8)
was evaluated using Eq.~28! and the new electron distribu
tion was calculated by solving Eqs.~23! and~25!. The metal
potential was calculated from the new electron distribut
by using Eq.~22! and the corresponding metal field was us
in the next set of solutions of Eq.~19! and this iterative
process was continued until convergence was attained.

III. NUMERICAL RESULTS

The dipolar solvents studied in this work can be specifi
by specifying the values of the reduced parameters: redu
dipole momentm* 5Am2/kBTs3 and the reduced bulk den
sity r0* 5r0s3 and the metal is described by the Wigne
Seitz radiusr s5(3/4pr1)1/3. The solvent in the present ca
culations is characterized bym* 51.29 andr0* 50.74. We
have, however, used three different values of the redu
Wigner-Seitz radiusr s* ~5r s /a0 where a0 is the Bohr ra-
dius! for the metal surfaces.

In Fig. 1, we have plotted the results ofr(z) for three
different values of reduced Wigner-Seitz radiusr s* 52.65, 3,
and`. We note thatr s5` corresponds to a nonmetallic o
an inert surface. It is seen that the solvent density profiles
highly nonuniform near the metal surface. Also, the dens
at the surface increases with decrease ofr s , which is more
clearly shown in the inset. This implies that electrostatic fi
of the metal surface attracts the solvent molecules and le
to a stronger physisorption at the metal surface. Also,
profiles ofr(z) show pronounced oscillations in the interf
cial region indicating layering of the solvent structure at m
croscopic level induced by the metal field. We next disc
the results of solvent polarization which are shown in Fig
-
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The solvent polarization is found to be most significant n
the surface and then it oscillates until the bulk value
reached. The results seem to depend rather strongly on
strength of the metal field characterized by the value ofr s .
Also, the polarization increases with decrease ofr s in a non-
linear fashion. In Fig. 3, we have plotted the quantity^cosu&z
againstz for two different values of the Wigner-Seitz radiu
r s . We note that there is no polarization forr s5` and hence
^cosu&z is zero for this particular value ofr s . For smaller
values ofr s , the molecules near the surface are found to
significantly oriented. This is in agreement with the results
recent molecular dynamics simulations of simple dipolar l
uids near metal surfaces@12#. Also, the profiles of̂ cosu&z
are seen to oscillate with distance from the surface, wh
can be attributed to the interplay between the metal-solv
and solvent-solvent interactions. This is, again, in agreem
with the results of recent MD simulations@12#.

FIG. 1. The variation of solvent density with distance from t
metal surface. The solid, long-dashed, and short dashed curve
for r s* 52.65, 3.0, and̀ , respectively. The reduced distancez*
5z/s. Other reduced quantities are defined in the text.

FIG. 2. The variation of solvent polarization with distance fro
the metal surface. The solid and dashed curves are forr s* 52.65 and
3.0, respectively.



v
ur
nc
na
ur
tro

h
th

ec-
etal
y at
ent
tire
at-
ear
ity
is

the
nal
is

ere
or-
et-
om-
tal-
h is

the
x-

an
tal
cted
ntial
etal

nd
l-
rk

l
ke
in

PRE 59 3145NONLINEAR THEORY OF METAL-SOLVENT INTERFACE . . .
IV. SUMMARY AND CONCLUSIONS

We summarize the main results of this work. We ha
developed a nonlinear theory for the calculation of struct
of a metal-solvent interface by using classical density fu
tional theory for the solvent and quantum density functio
theory for the metal. Our approach to the interfacial struct
is based on a weighted density approximation for the iso
pic part of the solvent density and the anisotropic~or dipolar!
part is calculated by using a perturbative approach. T
theory, however, retains the full nonlinear dependence of

FIG. 3. The variation of̂ cosu&z with distance from the meta
surface whereu is the average angle that a solvent molecule ma
with the direction of the metal field. The different curves are as
Fig. 2.
A

C.

G
o-

J.

h

e
e
-
l
e
-

e
e

interfacial solvent density and polarization on the metal el
trostatic potential and solvent-solvent interactions. The m
potential arises from the inhomogeneous electron densit
the surface, which is influenced by the solvent; the solv
structure, in turn, is influenced by the metal; and the en
system is solved self-consistently until convergence is
tained. It is found that the number density of the solvent n
the metal surface is significantly higher than the bulk dens
that occurs due to strong physisorption. The polarization
found to depend nonlinearly on the electrostatic field of
metal and exhibits the presence of pronounced orientatio
order of solvent molecules near the metal surface. This
most important in the first layer at the metal surface wh
the solvent dipoles tend to align parallel to the surface n
mal. This is in agreement with the results of earlier theor
ical calculations based on integral equation theory and c
puter simulations. We note that a nonlinear theory for me
solvent interface based on a density functional approac
presented here for the first time.

The theory presented in this paper can be extended to
study of more complex metal-solvent interfaces. For e
ample, it will be interesting to investigate the structure of
ion-dipole mixture and a binary dipolar liquid near a me
surface. The interfacial structure of such systems is expe
to be rather complex and interesting because of prefere
physisorption of one species against the other at the m
surface. Work in these directions is in progress.
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