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Nonlinear theory of metal-solvent interface using the density functional approach

Sanjib Senapati and Amalendu Chandra
Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
(Received 17 July 1998

A nonlinear theory for the calculation of spatial and orientational structure of a dipolar solvent near a metal
surface is developed by using the density functional approach. The theory is based on a weighted density
approximation for the isotropic part of the density and the anisotropic part is calculated by using a perturbative
approach. The theory, however, retains the full nonlinear dependence of the inhomogeneous solvent structure
on the field produced by the metal surface and also on solvent-solvent interactions. Explicit numerical results
are obtained for the number density and polarization of a dipolar solvent near a metal surface. The number
density of the solvent near the surface is found to increase with increase of the electrostatic field of the metal,
which is a nonlinear effect. The polarization is also found to increase nonlinearly with the metal field and
exhibits the presence of pronounced orientational order near the metal s{iE§4063-651%99)02403-4

PACS numbegps): 68.45.Da, 61.20.Gy

I. INTRODUCTION MD simulations of the SPC/E model of wat¢t3] near
charged platinum surfaces and found no dramatic increase of

A detailed description of the structure and dynamics of avater density near the surfaces. Also, no significant disrup-
dipolar liquid near a metal surface is of primary importancetion of hydrogen bonding near the charged surfaces was
in electrochemistry and surface science. The inhomogeneotisund. Clearly, our understanding of the structure of dipolar
field of a metal surface can influence the structure and dysolvents near metal surfaces is far from complete and many
namics at the molecular level and as a result the behavior dfasic questions remain.
an interfacial medium can be very different from that of a There has also been a good deal of interest in developing
bulk liquid. The approach of a molecule to a metal surface igheories of the metal-solvent interface. In their early work,
an important step in many physical and chemical processeBadiali, Rosinberg, and Goodismdi4] considered con-
such as adsorption and heterogeneous electron transfer rediccuum dielectric models and Schmicklgr5] treated mono-
tions[1] and the rates of such processes are expected to hayers of discrete dipoles on a metal surface. In further stud-
influenced by the molecular properties of the metal-solventes, Badiali et al. [16] and others[17—19 considered a
interface. In the present paper, we focus on the structurahetal-solution interface by considering the molecularity of
properties of a metal-solvent interface. the solution. Although these studies demonstrated the impor-

The modifications of the structure of a dipolar solventtance of treating the liquid at a molecular level, they did not
near a metal surface have been the subject of much attentigmmoperly couple the solution structure at interface to the elec-
in the recent past, both experimentally and theoreticallytronic structure of the metal. In a further significant advance,
Toney and co-workerf2,3] measured the spatial and orien- Berardet al. [20] investigated the structure of a dipolar sol-
tational structure of water molecules near silver surfaces byent near a metal surface by including the coupling between
means ofin situ x-ray scattering. They found that water den- the interfacial solvent structure and the electron density of
sity near the surface is significantly higher than the bulkthe metal. These authors treated the metal by employing the
density, which implies that the hydrogen bonding network isso-called jellium model, which was then solved by using the
disrupted in the water layer next to the charged surfacegeneral self-consistent approach of Gies and Gerhazdis
Also, pronounced orientational structure was found in theiffor metal slabs of finite thickness. The solvent structure was
experiments. Similar orientational order was also found forobtained by employing the reference hypernetted chain
water molecules near gold surfaces by Ataka, YotsuyanagiRHNC) approximation 22] taking account of metal-solvent
and Osawd4] by means of surface-enhanced infrared ab-interaction. The solvent structure at the interface was found
sorption spectroscopy. In the past decade, molecular dynane be significantly altered by electrostatic interactions with
ics (MD) and Monte CarldMC) simulations have been em- the metal surface.
ployed to investigate the structural properties of dipolar An alternative approach to the study of a solid-liquid in-
solvents near metal surfacgs—12. In these studies, the terface is the density functional theofFT), which has
liquid is usually treated by employing one of the standardbeen recognized as a versatile tool for the description of the
water models and the surface-water interaction is modeled istructure and properties of inhomogeneous systg8k A
different ways. Many models of metal-water interaction arerecent development in the density functional theory is the
based on the calculations of a water molecule with a metado-called weighted density approximatiotWDA) [23-30.
cluster. Metal-water interactions have also been modeled adhis is a nonperturbative approach in which one assumes
suming a planar surface with a uniform distribution of that a system with an inhomogeneous density distribution
Lennard-Jones particles for the metal atoms or site-site pazan be locally mapped to a corresponding uniform system
tentials acting between the metal and water molecules. Iwith a position-dependent effective density. Two recent
one such recent study, Xia and Berkowjtizl] carried out weighted density schemes that have been quite successful are
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due to Tarazon®27] and Ashcroft and co-workeff8,29.  metal electrostatic field generated by the nonuniform elec-
The first approach is based on an evaluation of excess freéron density of the metal surface. Thu§(z,{}) can be writ-
energy density from the corresponding expression of the uniten as

form system using the effective density and the approach of

Ashcroft and co-workers is based on a calculation of the u'(z,Q)=upw(|z—2') —E'(2) - 1, 2
first-order correlation function of an inhomogeneous system DN e ,
using the corresponding expression for a uniform system‘{"he,reuhwdzfz ) is infinity for |2—2'|</2 and zero oth-
The density functional approaches using WDA have beeff™Wis€ ande’(z) is the electric field produced atby the
quite successful in predicting the structure of neutral inhoMetal surface located a'. o and u are, respectively, the

mogeneous hard sphere fluids and ionic solutions near solf@i@meter and dipole vector of a solvent molecule with orien-
surfaces and, very recently, have been extended to study d@tion (2.

polar fluids near charged surfaci®l,32. Similar studies We denote p(r.()) as the position- and orientation-
have not yet been carried out to investigate the structure arfdéPendent number density of the solvent. In DFT, the grand
properties of a metal-solvent interface. potential of this system at fixed temperature, volume, exter-

In this work, we present a nonlinear theory for the solvent?@! field, and chemical potential can be exactly expressed as
structure and polarization near a metal surface by using cla& functional of the inhomogeneous density distribution
sical DFT for the solvent and quantum DFT for the metal.

The theory is based on a weighted density approximation for g_l[p(r,g)]: Flp(r,Q)]+ f dr dQ
the isotropic correlation and a perturbative approximation for
the dipolar electrostatic contribution to the first-order corre- X p(r,Q)[u(r,Q)—1], 3

lation function of the inhomogeneous solvent. The theory,
however, retains the full nonlinear dependence of the interyhere u(r,Q) is the external potentialy is the chemical
facial solvent structure on the metal potential and also omotential, andT is the temperature. The intrinsic Helmholtz
solvent-solvent interactions. The metal potential is calculategree energyF[p(r,€)] is a universal functional of density
by modeling the metal as a jellium that is then solved byand consists of two components,
using the general quantum density functional approach of _
Hohenberg-Kohn-Shanj33,34]. Self-consistent equations Flp(r,Q)]1=F9p(r,Q)]+Fp(r,Q)], 4
are derived for the solvent density, polarization, and metal
electron density. The final equations are solved iterativelyvhere the ideal gas free-energy functiomg{ p(r,(2)] is
and results are obtained for the density and polarization ogiven by
the interfacial solvent.

The organization of the rest of the paper is as follows. In id —p-1
Sec. Il, we present the theory and the numerical results are Fle(nd)1=4 f drd p(r.{)
discussed in Sec. Ill. We summarize our conclusions in Sec.

. x{In4m\3p(r,Q)—1}, (5)

whereB=1/kgT, kg is Boltzmann constant andis the ther-
Il. THEORY mal de Broglie wavelength. The excess free energy
F¥{p(r,Q)] includes the contribution from intermolecular

We consider a solvent consisting of nonpolarizable dipOsjntaractions and it defines the direct correlation functions of
lar molecules that are confined between two metal surfaceggtarent order through functional derivatives, the most im-

The separation between the surfaces is large enough so ha{iiant ones being the first- and second-order correlation
the structure at one surface is not affected by t_hat at the othef . ~tions defined by22]
surface. The solvent molecules are characterized by the so-

called dipolar hard-sphere potential where dipolar molecules SF{p]

interact through a short-range hard-sphere interaction and a M, Q;[p(r, ) ])= —Bm, (6)
long-range dipole-dipole interaction potential. The solvent AT

molecules also interact with the two metal surfaces, which SF ]

are considered to be infinite walls located at positiznand c@(r,r',0,0)=-p —. (7)
Z" along thez axis, and thex andy axes are parallel to the Sp(r, Q) ép(r', Q)

surfaces. For this geometry, the wall-solvent interaction po-

tential depends on the coordinate of the solvent molecule g/llnlrlrllzmgdthe Igratr_1d ;t)r(])tenrt:al 9f IEq(.?t)) v:_n?freiﬁect t?
and on its orientatiori(2) and can be written as ensity and evaluating the chemical potential for the uniform

bulk density, one obtains an expression for the equilibrium
density of the dipolar fluid between the two surfaces. Since
the density variation is only along the perpendicuiardi-

] ) rection, one can write the following expression for the inho-
whereu’ andu” represent the interaction of a solvent par- mogeneous density:

ticle with walls located atz=z' and z=2Z", respectively.

Both u’ andu” include a short-range isotropic part and an Po

electrostatic anisotropic part. The short-range isotropic part ~ P(Z.{})= 7—exd —fu(z,Q)

is described by a hard-wall—hard-sphere interaction and the

anisotropic part represents the interaction of a dipole with the +cB Q[ p(z. ) ) —cP(poldm)], (8

u(z,Q)=u'(z,Q2)+u"(z,Q0), (1)
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for o/2<z<(L—0/2) andp(z,Q2) =0 otherwise, wher& is  pling of electrostatic and hard-sphere interactions. We adopt
the separation between the two metal surfaces along thea partially nonperturbative approach in which we evaluate
direction. The application of the density functional methodthe isotropic hard-sphere contributimﬁ? using WDA and

can now proceed by the search for a self-consistent solutiofhe remaining anisotropic pan(e}() through a perturbative

of Eq. (8). The above equation is a formally exact relation agpproach by using an equation similar to E8). but involv-
that, in principle, may be solved f@i(z,Q)) if the functional  jng only the anisotropic terms of the second-order direct cor-
¢ is known. In practice, howevec™® is generally un- relation function. The expression for the inhomogeneous
known for inhomogeneous systems and so must be approxgtensity can now be written in the following form:

mated. The simplest approximation of(r,Q:[p(r,Q)])

of an inhomogeneous system involves a perturbative expan- pnd2)

sion (up to first order in terms of the density inhomogeneity p(2,Q)=—— ex;{ —Bu(z,Q2)

that makes use of the second-order direct correlation function
of the corresponding homogeneous system and is given by

+f dxdy o’ dQ'[c™|r—r"|:po)
cM(r,Q;[p(r,Q)])—c(poldm)

X G140, Q") +cHA|r 1], po)

zf dr’dQ’E(2>(r—r’,Q,Q’)(p(r',Qf)_ﬂ),

am X 10,07 P))(p(2,Q) - poldm)| (12)

€)
~=(2) , N : and
whereT'“/(r—r’,Q,Q") is the second-order direct correla-
tion function of the homogeneous liquid. Tlzedependent ord2)=po exchlg(ﬁs(z))_cgls)(po)], (13)

first-order correlation functioe™)(z,Q;[p(z,Q)]) can be

obtameq by mtegratmg Eq9) overx andy coo_rdlnates. For' wherecﬁls)(ﬁ]s(z)) refers to the hard-sphere contribution to
convenience, we write the second-order direct correlation) .. . . !

C . . the first-order correlation function defined through WDA at
function in terms of angular functions as follows:

an effective density,{z) obtained as the weighted average

T (r—1,0,0")=c%|r—r'|) E,S(z)=fdz’ghs(z’)w(|_z—z’|) wherew(z—z') is a planar
averaged weight function for the hard-sphere density. There
+cr=r']) 9 Q,Q") are several ways to calculate the weight function, the most

120 iy a1l Vo successful among them are those of Tarazd®¥ and of

e[ =1 Q. Q" 1), Ashcroft and co-worker§28,29. In the WDA proposed by

(10 Tarazond 27], cﬁls)(z;ﬁ(z)) is calculated by calculating the
i 110 , ., hard-sphere contribution to the excess free-energy dehgity
where the angular functiongp™(Q,Q')=(p-&") and  [gefined throughF &= fdr p(r)f.{r)] of the uniform system

11, ’ ooy A A ot S S G ~ ~ . . — . -
¢UAQ, Q" F) =3 (- P) (@' 7) — (- '), o and i’ are the iqing the effective densify. In this scheme, the first-order
unit vectors along dipole moments of particles located at correlation functions are given by

andr’, andf=(r—r")/|r—r’|. In Eq. (10), c%Y|r—r'|)
represents the isotropic or hard-sphere part and the second

and third terms represent the anisotropic or dipolar parts of  ci(z;p)= —ﬂfhs[ﬁ(z)]—ﬁf dz' p(z")fidp(2)]
the direct correlation function the analytical solutions of

which are available within integral equation theories such as w(z—2z';p(2"))
mean spherical approximatidiviSA) [35]. X 1-5.(2)—2paZ )52 (14
An alternative to Eq(9) is to adopt the WDA in which P1 p2i<)p
(1) i . . .
¢ (z,Q;[p(z,Q)]) for the inhomogeneous density is ob- (1) _ _ ,
tained by evaluating the corresponding expres&ioh for Chs [Po] =~ BFfnd pol = Bpofnd pol. (15
he h flui ffecti Q). Th
INE? Wcr)irt'r;ogeneous uid at an effective denpity. (1) us, where f| is the derivative off.s. The expression for the
weight function in this approach is given by the second-order
Mz, Q5[ p(z,0)])—cM(pold) expansion
=T (p(2,90))—T(pyldm). (11) w(|z—2'[;p(2)=w(|z—2') +wV(|z—2'|)p(2)

Although the perturbative approximation, ), is simpler +w@(|z—-2'])p(2)?, (16)

to deal with, WDA has been known to provide a better treat-

ment for the hard-sphere correlation contributions. Therewith the density-independent component weight functions
fore, we decompose the total first-order direct correlatiornormalized asfdz’w(')(z—z’)=5iyo. The weighted density
function into two parts: cW=c{D+cl), wherec{! is the  p(2) in this scheme can be expressed as

isotropic hard-sphere contribution to the first-order direct

correlation function anat(e}(’ represents the remaining aniso- — )= 2p%(2)

tropic (or excesscontribution which arises from the explicit p(2)= [1-pP(2)]+[(A—pP(2)>—4p(2)p?(2)]¥?’
dipole-dipole electrostatic interactions and also from the cou- (17)
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where pt(z)=fdz p(z')w(]z—2'|), i=0,1,2. Explicit which constitute a set of nonlinear equations for the calcula-
expressions for the density-independent component weighion of number density, polarization, and average orientation
functions are available in the literatur27,30. In the present of a molecule near metal surfaces. The above equations can
work, we have implemented the above scheme for the calcuse solved iteratively once the metal electrostatic fle{d) is
lation of the hard-sphere part of the solvent density. known. We note thaE(z)=—(d/9z)V(z), whereV(z) is

We now expand the position and orientation dependenthe metal electrostatic potential that satisfies the Poisson
density p(z,Q)) in the basis set of spherical harmonics equation

Yim(Q) as follows[36]:
2

d
P20 = an(2)Vin(©). (19 a2/ @=Amed2), 22

wherep(2) is the charge density of the metal. An explicit
modeling of the electronic structure of the metal is now nec-
essary in order to calculate the charge density and the metal
field. Following Berarcet al.[20], we model the metal walls

by semi-infinite jellium slabs of width 2,. The jellium
model consists of a uniform background of positive charge
densityp, which represents the metal nuclei and core elec-
trons and the associated valence electron deps(s). The
valence electron density is calculated by using density func-

Clearly, the angle averaged number densip(z)
=[dQ p(z,Q)=V4mae(z) and the solvent polarization
P(z) is related toa;¢(z) by the following relationP(z)

= VJA4x/3ua o). Substitution of Eq(18) and explicit forms
of angular functiongp**® and ¢**?into Eq.(12) and carrying
out the angular integrations give the following simplified ex-
pressions for the density components:

apy(2) = prd2) Sinh BE(2) +11(2) +12(2)} . (199 tional theory[33,34.. In this approach, the electron density is
Jam  BrE(Z)+11(2)+15(2) calculated by solving the effective one-electron Sdimger
equation

COSHBLE(2) +1,(2) +1,(2)}

a(2)=(3) 1/ZPhs( 2)

= I I hZ d2
BrE(Z)+11(2)+12(2) ~om g2 W@ Ver(Z) dn(Z') = €niin(2'), (23
SiNN{BrE(z)+11(2)+1,(2)} (19b) " m
[BRE(2)+11(2)+1x(2)]* ) wherey,, ande, are the one-electron normalized eigenfunc-

whereE(2) is the electrostatic field of the metal surfaces and!ion and energy eigenvalue for tirgh state andm, is the
,(z) andl,(2) are given by mass of an electrorz’ denotes the coordinate with origin

at the center of the metal sla¥.«(z') is the effective poten-
tial, which is given by
I1(2)=J dz'a oz )t z—2") (209
Vei(Z2') =Vijel(2') + Vy(Z2") + Vgip(Z'), (24
and
where Vi, (z') represents instantaneous interaction of an
3|z—2'|? electron with the field of the jelliumy,(z') is the exchange
T2t and correlation potential, andy,(z') is the average interac-
Ir—r'| : it i
tion energy of the electron with the dipolar solvent. The va-
(20b . R
lence electron density.(z') is given by

|2(Z):f dxdy Of’c’vllo(z’)cllz(llr—f’l)(

wherec!!z—z') is obtained front**%(|r—r’'|) by integrat-

ing over x and y coordinates. In the present work, MSA 2')= Me
solutions are used for'(|r—r’|) and c**q|r—r'|) [35]. PelZ)= 152
One can also calculate the quantifgosé),, the average

value of cod for a solvent molecule at a given value of the where ¢ is the Fermi energy, which is obtained from the
positionz from the surface. (cos#), can be written in terms  following equation:

of position and orientation dependent density as

> (e—en)|gn(2)? (25)

En< €

[dQ(cosh)p(z,Q) 27Tfizp+zw+ s & -
cosh)p(z, em— 17w Sn
fde(Zf)Q) = LIBHE+11(2)+15(2)], ] MeNF en<er NF

(21)

(cosh),=

whereng is the number of eigenstates with energy< er .
Equation(26) is obtained by using the charge neutrality con-
dition.
In the present work, we have used the local density ap-
proximation with Wigner’s expression for the exchange and
sgorrelation energy38],

where L refers to the Langevin function, defined 4¢x)
=cothk)—x L. The expression fo{cosé), in the above
equation includes the effects of dielectric saturafi] in
the presence of a strong metal field, sif@®sé), in the
Langevin form approaches the saturated value of unity
large field strengths.

We note that the full nonlinearity of E@12) is retained in V,(2')=—e?

611 4r (2')+23.48,
Eq.(19). Equationg19)—(21) are the key results of this work rg(z')

0.147

M@ T
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wherer (z')=[4mpc(z')/3]" 17, eis the magnitude of elec- 5.5
tronic charge, andy is the Bohr radius. The interaction of
an electron with the solvent dipoles is given [[20] i
.. 2mpoue| [z o ‘
Vaip(Z >=T<L Ous(2)dz— fz,g%ﬂz>dz),
28 ~— x O7
N
01 : . ~—
where gwsl(z) is the (011) component of the following X 55
Legendre polynomial expansion of the metal-solvent corre- )
lation function
1.1
Gus(2,60)=2 (—1)"90 2)Py(cost), (29
" OO | 1 | |
whereP(cosé) is the Legendre polynomial of order We 0.50 1.25 2.00 2.75 3.50 4.25
note that the solvent polarizatid?(z) is related togl<y(z) 7

by the following relation:
FIG. 1. The variation of solvent density with distance from the
2upo 011(2) (30 metal surface. The solid, long-dashed, and short dashed curves are
3 Yws ) for r¥=2.65, 3.0, and», respectively. The reduced distanz&

=2z/o. Other reduced quantities are defined in the text.
Clearly, the metal potential depends on the solvent polariza- o o
tion, which, in turn, depends on the potential of the metall he solvent polanzanon_ is foqnd to be r_nost significant near
surface. Thus, the above equations for the metal potentidh® Surface and then it oscillates until the bulk value is
and the solvent structure are solved self-consistently througfg@ched. The results seem to depend rather strongly on the
iteration. Initially, the metal potential is calculated by replac-Strength of the metal field characterized by the valueof
ing the dipolar fluid by vacuum. The dipolar liquid was then AlSO, the polarization increases with decreaseyah a non-
introduced and the Eq19) was solved for the solvent den- linear fashion. In Fig. 3, we have plotted the quan(itps6),
sity and polarization. After this initial calculatiog,(z') ~ @gainstz for two different values of the Wigner-Seitz radius
was evaluated using E¢28) and the new electron distribu- T's- We note that there is no polarization fgr=< and hence
tion was calculated by solving Eq3) and(25). The metal  (C0sb), is zero for this particular value afs. For smaller
potential was calculated from the new electron distributionvalues ofr s, the molecules near the surface are found to be
by using Eq(22) and the Corresponding metal field was usedsigniﬁcantly oriented. Th|S is !n agre.ement W|th the .reSUItS. of
in the next set of solutions of Eq19) and this iterative recent molecular dynamics simulations of simple dipolar lig-

process was continued until convergence was attained.  Uids near metal surfac¢42]. Also, the profiles of(cos6),
are seen to oscillate with distance from the surface, which

can be attributed to the interplay between the metal-solvent
and solvent-solvent interactions. This is, again, in agreement

The dipolar solvents studied in this work can be specifiedvith the results of recent MD simulatio&2].
by specifying the values of the reduced parameters: reduced
dipole momeniu* = u?/kgTa? and the reduced bulk den-
sity pg =poo® and the metal is described by the Wigner-
Seitz radiug ¢= (3/4mp_)*%. The solvent in the present cal-
culations is characterized by* =1.29 andpg =0.74. We 2.75
have, however, used three different values of the reduced
Wigner-Seitz radiug} (=rgs/ag wherea, is the Bohr ra- 500

. 3% .
diug) for the metal surfaces. —

In Fig. 1, we have plotted the results p{z) for three ~—
different values of reduced Wigner-Seitz radids=2.65, 3, A 125
andoc. We note that ;=o0 corresponds to a nonmetallic or
an inert surface. It is seen that the solvent density profiles are

P(z)=-

IIl. NUMERICAL RESULTS

35.50

highly nonuniform near the metal surface. Also, the density 0.50

at the surface increases with decrease ofwhich is more

clearly shown in the inset. This implies that electrostatic field ~0.25 I l l '

of the metal surface attracts the solvent molecules and leads 0.50 1.25 2.00 2.75 350 4.25
to a stronger physisorption at the metal surface. Also, the 7k

profiles of p(z) show pronounced oscillations in the interfa-
cial region indicating layering of the solvent structure at mi-  FIG. 2. The variation of solvent polarization with distance from
croscopic level induced by the metal field. We next discusshe metal surface. The solid and dashed curves ang fer2.65 and
the results of solvent polarization which are shown in Fig. 2.3.0, respectively.
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0.55 interfacial solvent density and polarization on the metal elec-
trostatic potential and solvent-solvent interactions. The metal
potential arises from the inhomogeneous electron density at
the surface, which is influenced by the solvent; the solvent
structure, in turn, is influenced by the metal; and the entire
system is solved self-consistently until convergence is at-
tained. It is found that the number density of the solvent near
the metal surface is significantly higher than the bulk density
that occurs due to strong physisorption. The polarization is
found to depend nonlinearly on the electrostatic field of the
metal and exhibits the presence of pronounced orientational
order of solvent molecules near the metal surface. This is
most important in the first layer at the metal surface where
the solvent dipoles tend to align parallel to the surface nor-

0.35

< COSH >y
(@]
o

-0.05

—-0.25 ' ' ' ' mal. This is in agreement with the results of earlier theoret-
0.50 1.25 2.00 2.75 3.50 4.25 ical calculations based on integral equation theory and com-
z* puter simulations. We note that a nonlinear theory for metal-

solvent interface based on a density functional approach is
FIG. 3. The variation of cosé), with distance from the metal presented here for the first time.

sgrface where.? is the average apgle that a.solvent molecule makgs The theory presented in this paper can be extended to the
Wlth the direction of the metal field. The different curves are as 'nstudy of more complex metal-solvent interfaces. For ex-
Fig. 2. ample, it will be interesting to investigate the structure of an
ion-dipole mixture and a binary dipolar liquid near a metal

IV. SUMMARY AND CONCLUSIONS surface. The interfacial structure of such systems is expected

to be rather complex and interesting because of preferential

We summarize the main results of this vyork. We have hysisorption of one species against the other at the metal
developed a nonlinear theory for the calculation of structuréguncace Work in these directions is in progress

of a metal-solvent interface by using classical density func-
tional theory for the solvent and quantum densﬂy functional ACKNOWLEDGMENTS

theory for the metal. Our approach to the interfacial structure

is based on a weighted density approximation for the isotro- The financial support of the Department of Science and
pic part of the solvent density and the anisotrgpicdipolany ~ Technology, Government of India, is gratefully acknowl-
part is calculated by using a perturbative approach. Thedged. The calculation of the jellium potential in this work
theory, however, retains the full nonlinear dependence of thevas based on a program provided by Dr. D. Berard.
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